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A fundamental problem in plane elasticity is studied : to determine for a
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satisfy certain specified stress field criteria. The relationship between the
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results and other implications for a reinforced circular opening are discussed
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NOTATIO N

A Cross-sectiona l area of reinforcement

an Coefficients of mapping function

a~ Coefficients of complex function ;(,)

b~ Coefficients of complex function ~(~)

c Constant
Cn sd Coefficients of P function

D Related to difference of principal stresses

ds Element of arc length
Function related to radius of curvature

m,n Running ind ices
p Axial force in reinforcement
p,q Princ ipal stresses at infinity
R Si ze of opening

Normal force
r Radi al coordi nate (polar)
S Related to sum of principal stresses
I Tangential force
t Thickness of plate
U Ai ry stress function
x ,y Cartesian coordinates
z Complex number, x+iy

Curvilinear coordinates
o Polar angle

~ ,a ,r Curv ili near stresses3

~( ), p( ) Complex functions of argument
a Boundary va l ue of ~ at e

U = p = 1

c e~~
13

v Poisson ’s ratio
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ABSTRACT

A fundamental problem in plane elasticity is studied :

to determine for a given opening the amount and distribution

of reinforcing material requ i red to satisfy certain specified

stress field criteria. The relationship between the local

stress field around the opening and the reinforcement distri-

bution is presented explicitly such that either one of them

can assume the role of an Independent parameter. The problem

is set up as ~4jskhelishvili’s first boundary va l ue problem in

which a function is derived to represent the loads due t~
reinforcement. A solution is worked Out for a genera l mapp ing

function which can describe almost any opening of practical

interest. Numerical results and other implications for a

reinforced circular open’ng are discussed in greater detail.

INTRODUCTION

The use of reinforcements at the boundaries of openings of various
shapes is comon practice in ship and aircraft construction . Beginning
with the Kirsch solution of a circular opening in an infinite plate under
uniform tension , there are in the literature a great many papers which
deal with the boundary value problem of the reinforcement of openings in
plates. With a few notable exceptions [1,2] most researchers formulate
these investigations as a stress/strain boundary value problem , i.e., the
stresses and/or strains are specified (constrained) at infinity as well as
at hole boundaries and the resulting stress field is then computed . The
approach is therefore one of trial-and-error in which several designs of
reinforced openings must be studied before acceptable stress levels are
found.

Mansfield [1] attempted the inverse approach of specifying the
complete stress field in the plate and then seeking a compatibl e opening
wi th variable reinforcement. His stress criteria required the original
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stress field to be unperturbed by the presence of reinforced holes.
Mansfield , therefore, used the phrase “neutral holes”. The results he
produced were rather limited in application , as some of the reinforcements
requ i red to render the holes neutra l were not very practicable. Recently.
Bjorkman and Richard s [2] studied the inverse plane elasticity problem of
an in fini te plate containing a hole wnich leaves the first stress
invariant ~~~~~~ + a~~) of the origina l stress field unchanged . They called
such ho1es “harmonic holes” ; the phrase is justified in that ~~~~~ Is a
harmonic function which remains unaffected by the presence of such a hole.

They have used the usual Muskhelishvil i formalism and have further shown
that an ellipse is a possible shape for a harmonic hole where the ratio of

major to mi nor axes bears a direct relationship to the ratio of the norma l
stresses at infinity in two directions. While the treatment of tht. problem
by Bjorkman and Richards [2] is qu ite elegant , the actual app licat ion is
again somewha t limited due to the shape (e l l ipt ical)  and unreinforced
nature of the holes.

The approach followed in the present paper builds partly upon an
earlier paper by the author [3] and partly upon the “harmonic hole”
condition . The problem can thus be formulated : determine the distribution
of reinforcement around a specified opening in an infinite plate under bi-
axial loading such that the sum of the principa l stresses (or the first
invariant of the stress tensor) remains unchanged .

BOUNDARY CONDITIONS

Figure 1 shows an opening of general shape which is reinforced with a
variable amount of reinforcement. The forces acting on a boundary element,
ds , of the reinforcement are shown in Figures 2a and 2b. If this boundary
is to be in elastic equilibrium, the followi ng equations must hold true
(in curvilinear coordinates , Figure 2a):

1
~ ds + Tds = 0, R* ds _ Pd~ = 0,

aS (1A)
R* a t , T T  t ;

2

L. ~~~~~~~~ 
.
~~~~~~ _--- ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~~~~,

___ __ _._ _
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Figure 1 — A Reinforced Hole in a Plate
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Figure 2 — Forces on an Element of Reinforcement
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and (in Cartesian coordinates , Figure 2b):

d(P sin •) t(o  dx - r dy)y (18)
d(P cos •) = t(i

~~
dx - a

~
dy)

These equations assume that the reinforcing member does not resist
bending and is distributed thinly along the hole boundary . If the Airy
stress function , U, is introduced in Equations (18), total integration
and sunination of the two equations gives

+ i ~4~= -i ~ e1
~’ + c (2)

where c is an arbitrary complex constant. Let

z = z( ç )  (3)

be a mapping function which transforms the actual opening in the z-plane
to a unit circular opening in the ~-plarie . Equation (3) can be used to
obtain

e1’
~
’ = i a.
j 

z’(oF (4)
z’(o)

where a is the boundary value of ~ at the opening. Equations (4) and (2)
can be combined to give

P / z’(a) ‘
~~~ ~ (5)ax ay t v z ’ (a )

where, due to equivalence of tangential strain at the opening boundary and
in the reinforcement ,

P A— - — ( a  - v a  ) (5A)t t 8

The boundary condition at the hole boundary can thus be written as

+ 
z(a ) 

•~(~) + 
P 
J 

z ’ ( o )  
+ c (6)

z’(ol z’(a)

where •(a) and ~i(a) are boundary values of the functions •(r) and i p (C)  at

4 
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the opening. These two complex functions define the entire stress field
by

+ a 2 ~~ + 
_____

~ LZ ~and (7)
- z, + 2 i t 2~~ [~

••(
~~~ 

: ‘ ( ç )  •B ~ ~

where

~‘ z ’ (ç

In order that Equations (7) also predict the stresses at in fini ty ,
the complex functions ,(i) and ~(c) assume the following forms

= S z( ~~) + • (~) 
‘
~

(8)
= D z(~) + ,~~~

( . )  )
where S and D are constants and the functions 0(ç ) and i~~~(ç) approach
zero at large values of ç. Thus

~ a ’
= E —~~V n=l ç

fl

b (9)

V n=O ç

The constants S and 0 can easily be computed , us ing Equations (7), to be

4
(1 0)

D = - 
q e 2 ~

where p and q are the stresses at infinity and o is the angle between the
x-axis and p. The form of •(ç) and 4’(c) can , thus , be effectively used to
automatically satisfy the boundary condition at infinity and Equation (6)
would then be the only remaining condition to be satisfied for obtaining a
solution to the problem. It should be noted that Equation (6) is
considerably simpler than a comparable equation developed earlier by the

5
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author [3] for solving the direct problems of elasticity involving

reinforced hole boundaries.

METHOD OF SOLUTION

Once the boundary condition as given by Equation (6) is developed ,

its solution is merely routine and may or may not be complicated depending

on the complexity of the mapping function . In this case, however , this

equation is further simplified by spec i fying a field condition which

requires

+ a,~ = 2 + ;:~ ] = + q (1 1)

Equation (11) reduces to ~~(ç) O,~ as shown by Bjorkman and

Richards [2]. Thus Equation (6) becomes

2Sz(a)+ D~ (~T+ gi
0

(a) = ~, 
~ . ~[z ’ (a) 

+ c (12)
‘ z’(o)

If the opening is assumed to be a smooth closed curve , it is possible
to represent

~-~~z’(o) z’(o)
’
~ n~O 

(co n 
+ ~~ (13)

Since ~-4z’(~ ) z ’(~) is a real quantity , c~ and dn have to be accordingly

adjusted . Eciuations (12) and (13) can be combined to obtain

2S z(a) z’(a) + ~~i(J z ’ (o ) + ~p~~ (~~~) z ’ (o )

n+1 d 
_ _ _

£ (C na + —T
~ 

+ c z (a) (14)
n=O a

which is now the boundary condition at the reinforced opening of any

general shape . It is easy to show that , wi th Muskhelishvi li ’s technique ,

* Care must be taken since Bjorkman and Richards [2] use different notation
.6
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Equation (14) can conven iently be solved for a general mapping function of

the type

2 ( ç )  = R(ç + ~ 
—

~~ 
) ( 15)

mzl r

which can represent almost any opening of practica l interest. However ,
to focus attention on a particular opening and to study the related
implications , the probl em of a circular opening will now be discussed in
greater detail.

CIRCULAR OPENING

Let a plane plate under biaxi al unifo rm tensions p and q in the x-
and y-directions , respectively (see Equations (10)), contain a circular
opening of radius R. The mapping function

z = z(c) Rç ; c, = re~
O (1 6)

which describes a circular geometry, can be substituted in the boundary
condition (Equation (14)) to obtain

DR2 
~~~~

— n n+1 
____2S R2a + — + R Z b a = ~ (c a + ‘~1 )+cR (17)a ,.,0 n n=O r~

Now Equation (17) and its conjugate can be multip lied by
and integrated around the unit circle to obtain

cn = d n ; n~~ O b0 = c = O

2c = b R + 2 S R2 b = 00 1 2 (18)
= 0  b3 D R

c2 DR2 b O ;  n~~~4

c = O ;  ~~~~

which define the solution to the problem. The functions •(~). ~
p(ç), and

can now be given by

7
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b R
= D R ç +  ~~ _ +  -j (1 9)

= b1 + 2SR + DR(o2 + .4)
Equations (5A), (7), and (19) can be combined to obtain

b
or =2S +

~~
•J
~~

_ (D- ~~~ cos 2e

a0 2S-~~-—1 + (D--,r ) cos 20 (20)

tre (0 + ~ ) sin 20

and , since at the hole boundary r is unity ,
b

A (p+q) + 2 -ç~- - 2(p-q)cos 20
b (21)

(1-v)(p+q) -2(l+v) -~~~
- + 2(l+v)(p-q)cos 20

Equations (20) and (21) clearly show a coupling through the term
b

~~~~

— . Actually, the presence of this term implies that several pairs of
reinforcements and stress distributions are possible for a reinforced
circular opening which do not alter the sum of principal stresses in the
rest of the infinite plate under uniform biaxial tension at infinity . The

b
possibl e values of p, q, and -

~~~~
, which do not permit the actual rein-

forcement distribution A/Rt to become negative , are given by the following

inequalities:

qR q 3 3qR
(22)

3+v 
_ _ _  _ _ _

l+3v 1+3v qR q 3~v 3+v qR

These equati ons , if plotted on graph paper , will delimi t an area which
will define several permissible pairs of values for p/q and b1/qR. It is

~
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obvious that, for p3q, Equation (21) reduces to the Mansfield solution [1].

At this point It should be noted that right from the beginning the problem

did not cal l for a unique solution . The constraint of unaltered Sum of

princ i pal stresses does not characterize the stress field as unique . As a

result a number of possible solutions exist which satisfy the prescribed

conditions. Any additional condition , such as regardi ng the stresses at
any particular location , will imediately make the solution unique. The

general procedure, as described , allows for some trade-off studies
between the reinforcement distributions and the stresses. Of course , as
pointed out by Bjorkman and Richards [2], other field conditions can also
be prescribed as the beginning point.

To get an actual feeling for the solution , let
b

= 1 .5 and —fl. = -0.5

Then
A 

- 3 - 2 cos 2o
Rt 

- 
(7- 3v) + 2(l+v)cos 20

which has a maximum value of —i--- at 0 = i~/2 and a minimum value ofl v  9-v
at 9=0. This distribution obviously requi res considerably less
reinforcing material than the Mansfield case of all-around tension with
p/q = 1 and a uniform A/Rt = l/l-v .

ADDITIONAL EXAMPLES

Circular geometries are a special case in many physical problems and
their solution is relatively simple. Therefore, it appears worthwhile to
investigate some noncircular openings. Let an Infinite plate under uni-
form biaxial tensions p and q along x- and y-axis , respectively, contain
a reinforced opening given by

a1 a~ ac
(23)

ç3

It is well-documented that a function such as Equation (23) can map

a ci rcular , elliptical , square , or rectangular opening in the z-plane onto

9 
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a unit circle in the c-plane depending on the values of constant s a1, a3,
and a5. Furthermore , if the orientation of the opening is syninetric wi th
respect to the axes , then the constants a1, a3, and a

5 
are real. Now with

Equation (23) as the mapping function , the boundary condition (14) after
usua l process i ng yie l ds

cn = d n ; n~~ O

2c0 
= Rb1 + 2SR2 (l-a~-3a~-5a~)

c = 2SR2(a -a a -3a a ) + DR2

c4 
= 2SR2(a3-a1a5)

C
6 

= 2SR2 a5
c = O ;  ~~~~

The function p (ç) can be determined by integrating the conjugate of
Equation (14). In fact, the coefficients are found to be:

b2n = O ; n~~ O

= a 1b1 + ~~~ + 25R(a1+3a1 a3+5a3a5) + DR(a~+2a3)

b5 
= a1 b3+3a3b1+1-+2SR(3a3+5a1a5)+40R(a1a3+a5)

b7 
= a1b5+3a3b3+5a5b1+-~-+1OSRa 5+3DR(2a1a5+a~)

(25)
b9 

= a1b7+3a3b5+5a5b3+ 8DRa3a5

= a1b9+3a3b7+5a5b5+ 5DRa~

b13 
= a1 b11 +3a3b9+5a5b7

b2n+l a1 b2~_1 +3a3b2 3 +5a5b2 5 ; n ~ 7 -

Now Equations (1A) and (5A) and the field condition can be combined
to obtain a useful relation that will bypass the use of ~p (ç); i.e., for
computing A/t:

10
j 

.-~~~~~~~~~~- - - -~~~ - . -~~ 



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---

~~~~~~~~~~

---- . -

Pd s
A 

_ _ _ _ _ _ _ _ _

4S - (l+v) 
~

where

ds ________________

+ + ~~
. 

~~
•
~~~

“

is the radius of curvature of the opening boundary . The problem is thus
solved . In fact, a direct substitution of the required quantities in
Equati on (26) leads to

A Of ~ I
= 

r~ Oj ~~Z Z (26A)t 4 S(z ’~~’)2 - (l+v)P(a)F(a)

where

2n 1P(a) E c2~(a +

fl 0 a

and

F(a) = z’z’ + L z ’i” + ~-i’z”

The mapping function z is given by Equation (23) and the constants C
n

by Equation (24). The situation is again similar to that of the circular
case. A/t is known wi thin a constant b1 which couples it with the stress
field. Again a number of stress fields can be paired wi th appropriate
reinforcements which will keep the sum of principal stresses unaltered
over the entire field.

Using Equation (23) for a mapping function and assuming no rein-
forcement, the probl em can be reduced to that of reference [2], which is
to be expected. In contrast to reference [2], which determines the
harmonic opening shape to suit an existing stress f ie ld , this paper
proposes a method for reinforcing an opening of any desired shape in such
a way that the reinforced opening behaves as a “harmon ic hole. ”

11 
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